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George Boole (1815-1864) developed Boolean logic

The principles of logical thinking have been under-
stood (and occasionally used) since the Hellenic era.

Boole’s contribution was to show how to systemize
these principles and express them in equations (called
Boolean logic or Boolean algebra).

Claude Shannon (1916-2001) showed how to use Boolean
algebra as the basis for switching technology. This
conribution systemized logical thinking for computer
and communication systems, both for the design and
programming of the systems and their applications.

Logic continues to be abused in politics, religion, and
most non-scientific areas.



Claude Shannon also created information theory. This
was a 'beautiful and fascinating theory’ for many years,
but eventually, almost when no one was looking, it be-
came the conceptual architecture of virtually all com-
mercial communication systems.

Would modern communication technology, computer
technology, and their synthesis have developed as quickly
and in the same way without Shannon and Boole?

Historians try to answer these questions, but I can
not. There can be little question, however, that their
contributions were extraordinary.

For us, as scientists and educators, it IS more impor-
tant to understand the characteristics that made these
giants great.



Claude Shannon gave a talk entitled ‘Creative Think-

iIng’ in 1952 to a small group of researchers. He
started with 3 main attributes:

e Training and experience

e Intelligence

e Motivation (the inner drive to formulate questions
and find answers; curiosity about fundamental char-
acteristics; need to understand in multiple ways;
satisfaction from understanding)

He then continued with a number of ‘tricks’ that he
often found useful. These tricks appear to be the
major principles of theoretical research.



SO O A W N

Tricks for formulating and solving problems

. Simplification: get rid of enough detail (including

practical aspects) for intuitive understanding.

. Similarity to a known problem (experience helps)
. Reformulate (avoid getting in a rut)

. Generalize (more than opposite of simplify)

. Structural analysis (break problem into pieces)

. Inversion (work back from desired result)



Other tricks that Shannon often used

. Be interested in several interesting problems at all
times. Work on the most interesting one.

. Look for contradictions as well as proofs.

. Study what is happening in multiple fields, but
don’t work on what many others are working on.

. Ask conceptual questions about everyday things.

5. Don’t write papers unless you really want to share

something fascinating.

. Don’'t assume your readers know everything you
do. Spoon feeding is not a bad idea.



QUICK BIOGRAPHY OF SHANNON
Normal but bright nerd in high school (Gaylord, Mich).
Double degree (EE, Math) at U. Mich. at age 20.

Grad student at MIT with RA baby-sitting for Van-
nevar Bush’s Differential Analyzer.

His SM thesis, "A Symbolic Analysis of Relay and
Switching Circuits,” gave practical importance to Boolean
algebra; essential impact on digital technology.

This created a new field. It started as a simple elegant
idea and became central to the new switching systems
at AT&T.



His PhD Thesis was ‘“An Algebra of Theoretical Ge-
netics”

The results were important, but Shannon lost interest
before publishing; the main results were rediscovered
independently over the years.

Shannon never liked to write, and he became fasci-
nated by telecommunication while finishing his PhD.



Claude worked on his mathematical theory of commu-
nication at Princeton’s Advanced Study Institute iIn
1940-41.

During the war he worked on Fire Control at Bell Labs;
he continued work on communication, and also on
cryptography.

He established a mathematical basis for cryptography
in 1945 based on his nascent communication theory.



By 1948, everything came together in his mathemat-
ical theory of communication.

Sources are characterized by the bit rate per symbol
or per second needed to reproduce the source exactly
or within a given distortion allowance.

Channels can be characterized by an essentially error
free bit rate called capacity.

A standard binary interface between sources and chan-
nels loses essentially nothing. Think how central a
binary interface is in the information age.
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‘The fundamental problem of communication is that
of reproducing at one point either exactly or approx-
iImately a message selected at another point. Fre-
quently the messages have meaning; that is they refer
to or are correlated according to some system with
certain physical or conceptual entities. These seman-
tic aspects of communication are irrelevant to the en-
gineering problem. The significant aspect is that the
actual message is one selected from a set of possible
messages. T he system must be designed to operate
for each possible selection, not just the one which will
actually be chosen since this is unknown at the time
of design.’

C. E. Shannon, 1948
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We review the source representation briefly.
Claude looked at the example of English text and first
modeled it as a stochastic process with independent

identically distributed (IID) letters.

Why stochastic? It makes sense for the telecommu-
nication system designer.

Why IID7? It explains the basic idea behind compres-
sion; it builds the framework for ‘better’ modaels.
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Let p(7) be the probability of the letter i; the probability
of an IID letter sequence x(7) = z4,... .z, is then

Prix(M} = p(z1)p(z2) - plar)
Pr{Shannon} p(S)p(h)p(a)p(n)p(n)p(o)p(n)
= p>(n)p(S)p(h)p(a)p(o)

From the law of large numbers (LLN), typical se-
quences x(7) with r >> 1 have about 7p(i) appearances
of letter ¢ for each i, and thus

Pr{x(M} =~ T[pG)™?®

S>T[>ip() 1092 p(d)] — o—TH where

>~ —p(i) 1092 (i)

H
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All typical sequences have about the same probability.
Cumulatively, their probability is =~ 1.

There are about 27H(P) typical sequences. They can
be represented by about 7H bits.

Note that Shannon used the ‘tricks’ of simplification
to IID, then similarity to LLN, then reformulation to
look at typical sequences. Then structural analysis to
separate finding entropy from actual source coding.
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The above typical sequence argument extends natu-
rally from IID sequences to ergodic Markov chains.
Shannon explained this by looking at digrams and tri-
grams of letters and then of words.

T his generalization starts to approximates natural lan-
guage.

Shannon also devised a simple algorithm for encoding
sequences into almost the minimum number of bits.

In 1952, Dave Huffman beat Shannon at his own game
by reformulating Shannon’s approach into a beautifully
simple optimal source coding algorithm.
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Jacob Ziv and Abe Lempel in 1978-9 extended source
coding to ‘universal source coding’ where the sequence
probabilities were simultaneously measured and used.

T his turned source coding into something very practi-
cal, since real data sources usually have slowly chang-
iIng statistics.

All of Shannon’s work on source coding might have
been done by a well-trained, bright, motivated gradu-
ate student by making very good guesses and by using
Shannon’s tricks.

His work was Dbrilliantly simple and simply brilliant.
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T hese same typical sequence arguments work for noisy
channels.

Here Claude looked at jointly typical input/output se-
quences with an arbitrary simple input model.

The channel was modeled by stochastic outputs given
inputs.

The trick here was a randomly chosen code of input
sequences.

17



Shannon’s genius lay in finding the "right way,” the
"simple way” to look at everyday technological prob-
lems.

Examples: communication systems, switching systems,
crypto systems, chess playing machines, solving mazes,
controlling unicycles, gambling strategies, etc.

He built mathematical (and physical) models to help
understand these problems, but his focus was on the
underlying problem (the architecture), not in mathe-
matics per se nor in problem details.
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Shannon was almost the opposite of an applied math-
ematician.

Applied mathematicians solve mathematical models
formulated by others (perhaps with minor changes to
suit the tools of their trade).

Shannon was a creator of models — his genius lay in
determining the core of the problem, removing details
that could be reinserted later.
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QUICK BIOGRAPHY OF GEORGE BOOLE

Son of a cobbler who was more interested in math-
ematics and optics than cobbling; brought up in Lin-
coln, England (120 miles N. of London)

George was largely self-taught, first in religion and
multiple languages, then mathematics. He supported
himself (from age 16) by teaching in day schools and
boarding schools.

He started a prolific career in writing mathematics pa-
pers, and won a Royal Medal from the Royal Society
in 1944 for a paper on symbolic algebra. After the
Royal Medal, his life was a sequence of successes.
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His “Mathematical Analysis of Logic” came in 1847,
followed by becoming Professor of Mathematics at
University College, Cork, Irland, and finally “An In-
vesigation into the Laws of Thought” in 1854. He
had no academic degrees.

Boole was respected in his time for many contribu-
tions, but he is remembered for the two papers on
logic, now known as Boolean algebra.

T he principles of logic have been known since Aristo-
tle, but Boole succeeded in expressing logical propo-
sitions by equations.

This reduction to equations brings a clarity and sim-
plicity to logic which is absent with the fuzziness of
natural language.
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SHANNON AND BOOLE SIMILARITIES
Recognized when very young (Shannon 22, Boole 29)

T he magnum opus of each opened up a new field and
required about 8 years

Each magnum opus was quite simple in retrospect.

Boole’'s research appears to indicate that he under-
stood Shannon’s ‘tricks’ of creative research.
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Simplification is probably the most difficult to under-
stand of Shannon’s ‘tricks.” There are many quotes
on the internet about simplicity, but most of them
seem to promote ignorance rather than what Shannon
meant. The following get close to Shannon’s ‘trick.’

Steven Weinberg: “In the study of anything outside
human affairs, including the study of complexity, it is

only simplicity that can be interesting.”

Einstein: “Everything should be as simple as possible,
but no simpler.”

Alfred N. Whitehead: ‘“Search for simplicity, but mis-
trust it.”
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Whitehead’s version is a home run, expressing the idea
even better than Shannon.

Searching for simplicity is really searching for intuitive
understanding of a simplified version of the problem
that doesn’t ignhore the underlying original issues.

Mistrusting that simplicity means critical questioning
of that intuitive understanding, hopefully leading to
generalization or to alternative simplifications.

This search and mistrust leads to a process of succes-
sive probing, varying the simplification, generalizing,
and reformulating, each step based on what has been
learned before and leading to greater understanding.
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Shannon was a grand master of this process. His writ-
ing often left out unsuccessful steps, but his explana-
tion of source coding makes the process very clear.

We are not all grand masters, but Shannon’s tricks
can be used to advantage by all of us. In these days
when we are all too busy to think, perhaps slowing
down a little and giving understanding a chance would
be fun.

Perhaps we even might teach our students about cre-
ative research instead of pushing them to program
more and more complex problems. Computational re-
sources let us solve incredibly complex problems, but
do we learn anything from those solutions?
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Graduate students often mistake simplicity for trivial-
ity. They stumble on some simple and elegant result,
and immediately try to complicate it as much as pos-
Sible.

The misconception is that it takes the best students
to solve the most complex problems.

Actually, it takes the best students to find the simplest
open problems.

Perhaps more familiarity with Shannon’s ‘tricks’ would
be helpful to them.
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